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The main difference between the two statistics is that the former regards θ
unknown, and the latter regards θ as a random variable having an unknown
distribution.

1 Maximum likelihood (ML)

Suppose X = (X1, . . . , Xn) is a random sample from a pdf fθ0 , where θ0 ∈ ∆ is
unknown. Suppose we observe x = (x1, . . . , xn) and we want to estimate θ0.

Consider the likelihood function given by

L(θ;x) = Pθ(X = x) (1)

A maximum likelihood estimate for θ is the θ̂ that maximizes the likelihood
function. For the continuous case,

L(θ;x) =

n∏
i=1

fθ(xi) (2)

The mle is to obtain θ̂ by letting l′(θ;x) = 0. If l(θ̂;x) reaches its maximum,

we say θ̂ is the maximum likelihood estimate.

2 Maximum a posteriori (MAP)

Let Θ be a random variable with pdf r. That is, Θ ∼ r(θ). Here, r is called
the prior pdf for Θ; we do not really know the true pdf for Θ, and this is a
subjective assignment or guess based on our present knowledge or ignorance.

We think of f(x1; θ) = f(x1|θ) as the conditional pdf of a random variable
X1 given Θ = θ. The joint pdf of X1 and Θ is thus given by f(x1|θ)r(θ).
In other words, we first generate Θ = θ and then generate X1 with pdf fθ.
Similarly, L(x; θ) = L(x|θ) =

∏n
i=1 fθ(xi), and the joint pdf of X and Θ is given

by j(x, θ) = L(x|θ)r(θ). What we are interested in is to update our knowledge
or belief about the distribution of Θ after the observation of X = x; more
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precisely, using Bayes’ theorem we consider

s(θ|x) =
j(x, θ)r(θ)

fX(X)
=
L(x, θ)r(θ)

fX(X)
=

L(x, θ)r(θ)∫
θ∈∆

L(x, θ)r(θ)dθ
(3)

We call s the posterior pdf. Thus ‘prior’ refers to our knowledge of the distribu-
tion of Θ prior to our observation of X and ‘posterior’ refers to our knowledge
after our observation of X.

The idea of MAP is to find θ which maximizes s(θ|x). Here, we only consider
the maximization of L(x, θ)r(θ) in that θ cannot change

∫
θ∈∆

L(x, θ)r(θ)dθ.

3 Example 1

Consider a case like Y = HΘ +V . Here, Θ ∼ N(θ0, P0), V ∼ (0, R). Therefore,
Y |Θ ∼ N(Hθ,R), and we have

s(θ|y) ∝ L(y|θ)r(θ)

∝ 1

|R||P0|
exp

(
−(y −Hθ)>R−1(y −Hθ)

)
exp

(
(θ − θ0)>P−1

0 (θ − θ0)
)
(4)

The MAP is to find θ̂ to minimize (y−Hθ)>R−1(y−Hθ)+(θ−θ0)>P−1
0 (θ−θ0).

4 Bayes’ estimator

The function L(θ, θ′) is called a loss function. Here, we consider a squared loss
function L(θ, θ′) = |θ − θ′|2. For such a squared loss function L(θ, θ′), a Bayes’
estimate of θ is a decision function δ(x) which minimizes E [L (Θ, δ(x)) |X = x].
Here, δ(x) = E(Θ|X = x). The Bayes’ estimator is δ(X) = E(Θ|X).

Here is a brief proof about why δ(x) = E(Θ|X = x) is the minimizer in
respect to the squared loss function.

Proof. Consider the scalar case. We assume the estimate of θ is z. We can thus

write E [L (Θ, δ(x)) |X = x] as E
[
(Θ− z)2 |X = x

]
.

E
[
(Θ− z)2 |X = x

]
= E

[
Θ2|X = x

]
− 2zE (Θ|X = x) + z2

= E
[
Θ2|X = x

]
− E2 [Θ|X = x] + (z − E (Θ|X = x))

2

(5)

It can be easily seen that E (Θ|X = x) is the minimizer.

For different loss function, we can obtain different minimizers. In fact, the
MAP minimizer represents the Bayes’ estimator under a certain loss function
corresponding to the minimizer as mode. However, for Gaussian distribution,
the mode is the same with the mean. Therefore, the MAP estimate is the same
with the Bayes’ estimate.
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5 Example 2

Consider the example as follows:

Y = X +W, (6)

where X ∼ N(0, P0), W ∼ N(0, Q), and x, y are both scalars. We are going to
compute the distribution of X|Y from two aspects. One is from MAP, and the
other from the joint Gaussian distribution. First, we consider the MAP method.
From the distribution of X and W , we have

Y |X = x ∼ N(x, P0) (7)

According to the Bayes’ rule, we have

pX|Y (x|y) ∝ pY |X(y|x)pX(x) ∝ exp
(

(y − x)
2
P−1

0

)
exp

(
x2P−1

0

)
∝ exp

((
x− yP0

P0 +Q

)2(
P0Q

P0 +Q

)−1
)

(8)

It can be observed that X|Y = y ∼ N
(

yP0

P0+Q ,
P0Q
P0+Q

)
. The MAP minimizer will

be yP0

P0+Q , which is equal to the Bayes’ estimate under the squared loss function.
Next, we consider the joint Gaussian distribution.[

X
Y

]
∼ N

([
0
0

]
,

[
P0 P0

P0 P0 +Q

])
(9)

Therefore, X|Y = y ∼ N
(

yP0

P0+Q ,
P0Q
P0+Q

)
, which is the same with that obtained

based on the MAP.
Furthermore, we can find that from[

Y
X

]
∼ N

([
0
0

]
,

[
P0 +Q P0

P0 P0

])
(10)

we have Y |X = x ∼ N (x, P0), which is the same with our assumption.
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